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Abstract—The ability to localize Internet hosts is appealing
for a range of applications from online advertising to localizing
cyber attacks. Recently, measurement-based approaches have
been proposed to accurately identify the location of Internet
hosts. These approaches typically produce erroneous results due
to measurement errors. In this paper, we propose an Enhanced
Learning Classifier approach for estimating the geolocation of
Internet hosts with increased accuracy. Our approach extends
an exisiting machine learning based approach by extracting
six features from network measurements and implementing a
new landmark selection policy. These enhancements allow us
to mitigate problems with measurement errors and reduces
average error distance in estimating location of Internet hosts.
To demonstrate the accuracy of our approach, we evaluate the
performance on network routers using ping measurements from
PlanetLab nodes with known geographic placement. Our results
demonstrate that our approach improves average accuracy by
geolocating internet hosts 100 miles closer to the true geographic
location versus prior measurement-based approaches.

I. INTRODUCTION

The ability to accurately identify the geographic location
of Internet devices has signficant implications for online-
advertisers, application developers, network operators and
network security analysts. For instance, IP geolocation is
used for enforcing digital content and territory rights (e.g.,
Pandora, BBC Iplayer, Real Media, Comedy Central, Netflix
and Spotify) and target advertising (e.g., Google). More re-
cently, IP geolocation techniques have been deployed in cloud
infrastructure services. For example, a Dropbox user may
require their data to be hosted on servers in San Francisco, but
the data’s true location may actually be in Tennessee (see Fig.
1). Users of cloud computing deploy Virtual Machines (VM)
on a cloud providers infrastructure without having to maintain
the hardware their VM is running on. However, cloud auditing
policy requires that cloud providers restrict VM locations to
certain datacenters, as specified by a Service Level Agreement
(SLA). Cloud users can use IP geolocation to independently
verify data confidentiality by ensuring location restrictions in
their cloud SLAs are met.

The problem of estimating geographical location of hosts
on the Internet by a single IP address presents several chal-
lenges due to lack of a relationship between the IP address and
its geographic location. Fig. 2 provides an overview of current
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IP geolocation may be used by users to verify the true location of

IP geolocation approaches. Over the last decade, several IP
geolocation approaches aimed at accurate approximation of
the location of network hosts have emerged. These approaches
can be broadly classified into two groups depending on
their technique to collect location information. One set of
techniques leverages information from commercial databases
to procure information on the geographic location of IP
addresses. These databases store organizational information
assigned to IP domains and DNS names. Databases such as
ARIN [13] and QUOVA [12] utilize previously registered data
to geographically locate an IP address. These databases tend to
be coarse grained, usually returning the headquarters location
of the organization that registered the IP address. This becomes
a problem when organizations distribute their IP addresses
over a wide geographic region, such as large ISPs or content
providers. The databases can also be easily fooled by proxies.

The other technique utilizes active delay and topology
measurements to estimate the geographic locations of IP
addresses. Measurement-based geolocation approaches which
use end-to-end RTTs are classified as delay-based algorithms
and those that use both RTT and topology information as
topology-aware algorithms. But topology based approaches
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are typically plagued by inaccuracies in geolocating nodes.
A recent study [18] reveals that topology-aware approaches
actually fare worse against an adversary who tries to subvert
the approaches into returning forged results. Topology-aware
approaches are therefore less suitable for security-sensitive
applications.

This paper presents a Enhanced Learning Classifier IP
geolocation approach, which extends an existing machine
learning based IP geolocation aprroach with additional features
and proper landmark selection. Recently, it has been shown
that accuracy of IP geolocation can be improved by casting
IP geolocation as a machine learning classification problem.
This approach makes it possible to incorporate both network
measurements (latency and hop count) and societal character-
istics (city population density) to locate an IP address. We
improve the accuracy of the existing machine learning IP ge-
olocation classifier by expanding the list of features to include
average delay, standard deviation of delay, mode and median
of delay and careful selection of landmarks. The addition of
these features ensure that the our approach is less prone to
measurement errors and other network anomalies affecting the
distance approximation. To demonstrate the robustness and
the accuracy of our approach, we evaluate the performance
on PlanetLab nodes. Our performance analysis shows that
on ground truth data sets, our approach provides location
estimations with outstanding accuracy compared to state-of-
the-art techniques, Constraint Based Geolocation (CBG) [15]
and Machine Learning Based IP Geolocation [3].

The rest of the paper is organized as follows. In Section II
we provide an overview of state-of-the art active geolocation
approaches. In Section III we present our Enhanced Learning
Classifier to geolocate Internet hosts. In Section IV we provide
the performance evaluation of our approach by examining
the accuracy of location estimations. We finally conclude in
Section V.

II. RELATED WORK

Our proposed IP geolocation approach can be categorized
under the measurement-based approach. We compared the

performance of our approach with CBG [15] and Machine
Learning based IP Geolocation [3]. In most measurement-
based approaches, we have landmark nodes with known geo-
graphic location and a target node without known position. To
estimate the location of the target we measure network delays
from the landmarks to the target, and then convert the delays
into geographic distances based on a delay-distance function.
These delay based approaches only differ in how they express
the distance to delay function and how they triangulate the
position of the target.

Statistical Geolocation [14] develops a joint probability
density function of distance and delay that is input into a
force-directed algorithm used to geolocate the target. CBG
[15], on the other hand, establishes the distance-delay function,
by having the landmarks ping each other to derive a set of
points mapping geographic distance to network delay. Each
landmark then computes a linear (best fit) function that is
closest to, but below, the set of points. The distance between
each landmark and the target IP is inferred using the best
fit function, creating an implied circle around each landmark
where the target IP may be located. The target IP is then
predicted to be in the region of intersection of the circles of all
the landmarks. Spotter [17] derives a common delay-distance
model using a probabilistic approach based on a detailed
statistical analysis of the relationship between network delay
and geographic distance. The delay-based approach assumes
that network delay is well correlated with geographic distance.
However, network delay is composed of queuing, processing,
transmission and propagation delay, where propagation delay
is related to distance traveled, and the other delay compo-
nents vary depending on network load, thus adding noise to
the measured delay. This assumption is also violated when
network traffic does not take a direct path between hosts.
Therefore, delay-based approaches that depend on only delay
measurements as an input to their geolocation frameworks
continue to produce low accuracy results. One of the the
most recent delay-based IP geolocation approach [3] models IP
geolocation as a machine learning classification problem. This
classification-based approach makes it possible to incorporate
other types of geolocation information into the framework
other tha relying on network delay alone.

III. ENHANCING LEARNING CLASSIFIER

The goal of our approach is to improve the accuracy
of geolocating internet hosts by selecting appropriate net-
work measurement features and choosing landmarks based
on maximizing coverage and responsiveness. To that end,
we identified 6 features that our classifier uses in estimating
location of internet hosts. Of these features, 3 have not been
proposed before in previous research. We performed a passive
analysis of network traffic generated by probes sent from
landmarks to targets. We identified features that were able
to reduce measurement errors in estimating network delay
between landmarks and targets.



A. Overview of Machine Learning approach

Erikkson et.al., proposed the machine learning IP geolo-
cation approach that uses delay and hop measurements to
geolocate network routers [3]. This approach employs a Naive
Bayes framework to convert network measurements betweeen
landmarks and network routers to distances.

Let the network measurements from j landmarks to single
target be recorded as M = {mi,mo,...,m;}. Using Bayes
theorem, Eriksson et al. [3] estimates the county (¢) of the
target IP address as;

¢ = arg max p(c|M)
ceC (])

p(M|

= arg max ﬁ = arg néaxp(M\c)p(c)
ce

ceC
where p(c) is the probability of classifiying target in county ¢
and p(M |c) is the conditional probability of M being observed
given target county c. The value p(M) is the probability of
observing the measurement set can be ignored due to this value
being constant for any chosen county c.

Other than measurements from landmarks to IP targets,
Eriksson et al. also incorporate another feature, namely county
population density in their classifier. The county population
density for United States is publicly available on the U.S.
Census Bureau website [19]. The p(c) value is chosen based
on the fact that the number of routers in a specific geographic
location is strongly correlated with the population of that
geographic location [1].

The p(M]|c)value is estimated using kernel density es-
timators [6]. Assuming the entries of M are statistically
independent [11], we have;

p(M\c) = p({ml, ma, ...., mj}‘c)
= p(malc)p(malc)...p(m;]c) )

The aim is now to determine p(m;|c) for each of j
landmark locations and later substitute these values in equation
(2). With known j landmark locations, and known target
location, we can get the true distances from all these landmarks
to the target as d = {di,ds, ..., d;}. These true distances can
be used to learn the density (the probability of observing
measurements, m; given that the target is located in d;
distance away from the i-th landmark. Casting IP geolocation
as a machine learning-based classification problem enables
information from multiple datasets to be fused such that areas
that have low information content from one measurement can
be compensated with better information content from other
measurements.

B. Feature Selection

To determine the measurement features that model network
delay accurately, we analyzed the network delay collected
from probes generated between various landmark and targets
for one month. Tablel gives an overview of the measurement
features that we identified. In this section, we describe these
features and explain why we believe that they can contribute
towards increased geolocation accuracy.

TABLE I
FEATURE LIST

k 1 2 3 4 5 6
Features | Avg Hop Mode | Median Std. Pop
Dev. Density

Avg (Average Delay), Hop (Hop Count), Mode (Mode of Delay), Median
(Median of Delay), Std. Dev. (Standard Deviation of Delay) and Pop. Density
(Population Density)

The existing learning based IP geolocation approach uses
two measurement features (delay and hop count) and one
societal feature (population density). But the approach suffers
from large estimation errors that are caused by imperfect
measurements, sparse measurement availability, and irregular
Internet paths. In our approach, we mitigate these issues by
expanding the feature set. Our approach introduces three new
network measurement features (standard deviation of delay,
mode of delay and median of delay). Every target exhibits
different statistical behavior due to variations in the underlying
network between target and landmark. Instantaneous delay
measurements alone cannot capture the statistical variations
of the targets. For instance, probes between landmarks and
targets usually do not traverse the same network path. Each
network path introduces new routers which result in variation
of network delay. By incorporating the variance in the net-
work delay as features, we can improve the accuracy of the
classifier. The addition of the three new measurement features
comprehensively address all statistical variations of delay from
landmarks to targets.

Assume targets x and y each receive n ICMP echo (ping)
requests sent from a single landmark. Average delay is used
as a good estimate in predicting subsequent data points. If
deviations in each of the n ICMP echo requests from the
landmark to the x target are very minimal, then mean delay will
be a good representative to capture the information encoded
by n ICMP echo requests. But due to network dynamics, it
is quite possible that there exist sufficient deviation in the n
values from the landmark to the target y. The deviations may
not be uniform and may change with time. We need additional
features to capture this impact of network dynamics on the
delay measurements. We add median and mode features to
gain an accurate estimate of the “middle” of a set of latency
data. Finally, we add standard deviation to the list of features to
estimate the amount of deviation from the average delay. Table
I provides an overview of the features used in the Enhanced
Learning Classifier approach.

Our measurement set M = {mi,mo,...,m;}, where
mj = {m;i} and k = 1,2,3,4,5,6 (where the total number
of measurements to the target IP address is given by M = 65)

A set of nonnegative estimation weights {\ } is introduced
for each feature to reflect the importance and contribution of
that feature in the overall classification process [3]. Another
set of estimation weights {75} is introduced to order the
landmarks. A landmark with the smallest feature measurement
values weighs most and informs the classifier more accurately
than a landmark with the largest values. The weight pa-



rameter values will be chosen by the least squares parameter
estimation method. The method minimized the sum of squared
distance errors between the training set of IPs known locations
and the estimated locations.
With the features and the estimation weights in place, the
classifier in equation (1) may be restated in logarithm as;
¢ = arg max(zzzl
cec 3)
Ak D251 exp(—j.yk)log p(mjk) + Aslog p(c))

where J is the total number of measurements from landmarks
to target IP.

Procedure 1 Enhanced Learning Classifier

1: Identify set of landmarks based on satifying coverage and
responsiveness criteria.

2: Collect network measurements (hop count and latency)
from each landmark to a set of nodes with known geo-
graphic locations.

3: Use census database to estimate prior probability.

4. Expand feature selection to include average, mode, me-
dian, and standard deviation of latency measurements.

5: Perform kernel density estimation to estimate one-
dimensional distribution for each of the six features.

6: Find optimal values for each of the six features to mini-
mize sum of squared distance errors over the training set.

7: For each IP address with unknown geography, estimate
location using equation (3).

8: Perform 5-fold Cross Validation

9: Compute error distance by comparing with ground truth
database provided by Maxmind

IV. PERFORMANCE EVALUATION
A. Identifying target IP addresses

To evaluate our approach, we present the router localization
scenario, which is critical for examining the geographical
properties of the Internet. In this scenario, we collected as
many spatially diverse router IP addresses as possible within
continental United States. We identified routers along multiple
network paths between all PlanetlLab node pairs. To collect
the router IP addresses, we performed a full mesh traceroute
between responsive PlanetLab nodes multiple times between
June 1, 2011 and October 31, 2011. The traceroute probes
resulted in 142,937 router IP addresses. We used Maximind [7]
database to filter out the IP addresses that fall within the United
States and have known city and county locations. As different
IP addresses could potentially belong to unique interfaces of
the same router, we performed IP dealiasing to reduce the
router IP addresses to 23,843.

B. Identifying landmarks

The selection of landmarks plays a critical role in im-
proving the accuracy of measurement based IP geolocation.
Therefore, identifying suitable landmarks to reduce error dis-
tances is a crucial process. But a standard protocol or standard

The distribution of our landmarks

Fig. 3.

procedure that outlines a clear approach to landmark selection
is lacking. Prior methods have not presented techniques and
motivations for selecting landmarks. Landmark selection re-
mains an ambiguous task.

To identify our landmarks, we use the CoMon [2] project
of PlanetLab to retrieve a list of the active PlanetLab nodes.
Out of 1090 available PlanetLab nodes, 860 nodes responded
to our measurement probes. We used Maximind to filter the
alive PlanetLab nodes in the United States. As a result of
the filtering process, we found 308 alive PlanetLab nodes in
the United States. Ethan KatzBassett et al. [4] discovered that
distance from a target to the nearest landmark strongly pre-
dicts the estimation error. Therefore, delay-based techniques
only provide consistent quality if landmarks are ubiquitous.
To complement this discovery, we select a few targets in
New York state, as well as all the landmarks in New York
state and perform IP geolocation. We then use latitudes and
longitudes of the landmarks to eliminate those that are within
the same city, leaving out only one landmark per city. We
perform geolocation using the second set of filtered landmarks
with identical results. This process demonstrates that even
though landmarks need to be ubiquitous for consistent quality,
concentrating many of the landmarks in the location relative
to a target does not improve the IP geolocation reults of that
target. With these findings, we reduce the set of 308 landmarks
to 108. Out of 108 landmarks, 67 landmarks were able to send
an ICMP echo request to the 23,843 targets.

The distribution of our landmarks is limited by the exis-
tence or non-existence of PlanetLab nodes in certain areas.
Fig. 3 shows our landmark distribution.

To show the impact of landmark distribution on the ac-
curacy of IP geolocation, we divide our testing set into four
regions in the United states; North East region, West region,
North Central region and South region. Targets in the North
East region return an average error distance of 23.88 miles
with a median of 0 miles and a maximum error distance of
127 miles. Only 8 out of 151 targets return error distances of



TABLE I
COMPARISON OF THE MEAN ERROR DISTANCES (IN MILES) WITH PRIOR

METHODS
avg (avg, (avg, (avg, (avg, hop,
hop) hop, pop | hop, pop | pop density,
density) density, std, mod)
std)
CBG 322.49
Learning- | 278.96 | 261.89 253.34 - -
Based
Enhanced | 270.35 | 216.80 206.55 176.33 155.74
Learning
Classifier
avg (average delay), hop (hop count), pop density (population density), std

(standard deviation of delay) and mod (mode of delay)

more than 100 miles. The rich concentration of landmarks in
the North East region account for the excellent results, which
is not the same case in the other regions. Therefore, delay-
based approaches only provide consistent quality if landmarks
are ubiquitous.

C. Collect Measurements

To generate the measurement set, we collect instantaneous
delay and hop count measurement from each of the 23,843
targets to the 67 landmarks. For the instantaneous delay data,
we send 40 ICMP echo requets from each landmark to all the
targets. Based on the instantaneous delay measurements, we
calculate the average, standard deviation, mode and median
of delay for each target from each landmark, which results in
67 x 23,843 x 4 = 6,389, 924 measurements.

Using traceroute to collect hop count measurements causes
excessive overhead on the core routers. To avoid this overhead
we send a single ICMP echo request from each landmark to
all targets. We then use this request to calculate the hop count
of the reverse path [3,5]. We use 5-Fold Cross Validation to
test the performance of the methodology five times using 80%
of the routers as our training set, leaving the remaining 20%
of the routers for testing our classifier.

D. Preliminary results

Fig. 4 plots the average error distances in miles with
respect to the empirical cumulative probability for the five
features. This plot signifies the hypothesis that the accuracy
of IP geolocation can be improved by feature expansion,
both network and environmental features. Table II compares
our preliminary results with learning based IP geolocation
and CBG. As see in the table, the average error distance
estimates produced by our technique is lesser than learning-
based IP geolocation and CBG. Even with same set of features
as learning-based IP geolocation, the geolocation estimates
produced by our technique is better due to our landmarks
selection policy.

E. PlanetLab Challenges

We faced two key challenges while using PlanetLab as a
network measurement platform: unresponsive PlanetLab nodes
and coverage of PlanetLab nodes. As described in the prior
sections, 38% of our total landmarks were unresponsive to
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Fig. 4. Empirical cumulative probability of error distance. Features used in
each curve are labeled according to Table I

TABLE III
ERROR DISTANCES (MILES) ACROSS FOUR REGIONS IN THE UNITED
STATES

North North West South

East Central
Mean error distance 23.88 347.20 231.18 | 187.84
Median error distance 0 290.72 53.65 95.08
Maximum error distance 127.36 1270.74 882.06 | 706.01

ICMP probes. Unresponsive landmarks translate to inability
to geolocate targets in those respective areas.

We do not have landmarks in some of the states, e.g Alaska
and Hawaii due to absence of PlanetLab nodes. Targets within
these states return error distances of more than 1000 miles.
Distance from a target to the nearest landmark strongly pre-
dicts the estimation error. Therefore, delay-based techniques
only provide consistent quality if landmarks are ubiquitous.
The absence of PlanetLab landmarks in some areas remains to
be another challenge to delay based IP geolocation techniques.

To illustrate these two challenges in detail, we divide our
test dataset (1173 targets) into four regions in the United
States: North East region, West region, North Central region
and South region. These regions wre identified according to
the concentration of our landmarks in the United States (see
Fig. 3). The North East region has 23 of the 67 landmarks
(34% of total landmarks). Targets in the North East region
return an average error distance of 23.88 miles with a median
of 0 miles and a maximum error distance of 127 miles. Only
8 out of 151 targets return error distances of more than 100
miles. While targets in the North East region give us excellent
results, it is not the same with the rest of the regions. The poor
concentration of landmarks, especially in the North Central
and West regions highly affects the accuracy of targets in those
regions. Table III gives the mean, median and maximum error
distances of targets in all the four regions.



V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an Enhanced Learning Clas-
sifier approach to improve the accuracy of estimates of the
geographic location of Internet hosts. Our approach extends an
existing machine learning based IP geolocation framework by
adding new features and careful selection of landmarks based
on responsiveness and coverage. The additional features in our
approach model the variance in network delay and provide
a better statistical description for the relationship between
network delay and geographical distance. To demonstrate the
accuracy and robustness of our approach, we evaluate the
performance on PlanetLab nodes. The results show that the
addition of the new features and our landmark selection policy
does improve the overall estimation accuracy. For future work,
we plan to investigate additional features, both network based
and societal based, that lead to accuracy improvement in IP
geolocation. Finally, we will perform IP geolocation of routers
on GENTI’s [9, 10] multiple control frameworks to mitigate the
challenge of unresponsive landmark nodes.
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